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Abstract: Windowing is a sub-sampling method, originally proposed to cope with large datasets
when inducing decision trees with the ID3 and C4.5 algorithms. The method exhibits a strong
negative correlation between the accuracy of the learned models and the number of examples used
to induce them, i.e., the higher the accuracy of the obtained model, the fewer examples used to
induce it. This paper contributes to a better understanding of this behavior in order to promote
windowing as a sub-sampling method for Distributed Data Mining. For this, the generalization of the
behavior of windowing beyond decision trees is established, by corroborating the observed negative
correlation when adopting inductive algorithms of different nature. Then, focusing on decision trees,
the windows (samples) and the obtained models are analyzed in terms of Minimum Description
Length (MDL), Area Under the ROC Curve (AUC), Kulllback–Leibler divergence, and the similitude
metric Sim1; and compared to those obtained when using traditional methods: random, balanced,
and stratified samplings. It is shown that the aggressive sampling performed by windowing, up to
3% of the original dataset, induces models that are significantly more accurate than those obtained
from the traditional sampling methods, among which only the balanced sampling is comparable in
terms of AUC. Although the considered informational properties did not correlate with the obtained
accuracy, they provide clues about the behavior of windowing and suggest further experiments to
enhance such understanding and the performance of the method, i.e., studying the evolution of the
windows over time.

Keywords: sub-sampling; windowing; distributed data mining

1. Introduction

Windowing is a sub-sampling method that enabled the decision tree inductive algorithms
ID3 [1–3] and C4.5 [4,5] to cope with large datasets, i.e., those whose size precludes loading them in
memory. Algorithm 1 defines the method: First, a window is created by extracting a small random
sample of the available examples in the full dataset. The main step consists of inducing a model
with that window and of testing it on the remaining examples, such that all misclassified examples
are moved to the window. This step iterates until a stop condition is reached, e.g., all the available
examples are correctly classified or a desired level of accuracy is reached.
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Algorithm 1 Windowing.

Require: Examples {The original training set}
Ensure: Model {The induced model}

1: Window← sample(Examples)
2: Examples← Examples−Window
3: repeat

4: stopCond← true
5: model ← induce(Window)
6: for example ∈ Examples do

7: if classi f y(model, example) 6= class(example) then

8: Window←Window ∪ {example}
9: Examples← Examples− {example}

10: stopCond← f alse
11: end if
12: end for
13: until stopCond
14: return model

Despite Wirth and Catlett [6] publishing an early critic about the computational cost of windowing
and its inability to deal with noisy domains, Fürnkranz [7] argues that this method still offers three
advantages: (a) it copes well with memory limitations, reducing considerably the number of examples
required to induce a model of acceptable accuracy; (b) it offers an efficiency gain by reducing the
time of convergence, specially when using a separate-and-conquer inductive algorithm, as FOIL [8],
instead of the divide-and-conquer algorithms such as ID3 and C4.5., and; (c) it offers an accuracy gain,
specially in noiseless datasets, possibly explained by the fact that learning from a subset of examples
may often result in a less over-fitting theory.

Even when the lack of memory is not usually an issue nowadays, similar concerns arise when
mining big and/or distributed data, i.e., the impossibility or inconvenience of using all the available
examples to induce models. Windowing has been used as the core of a set of strategies for Distributed
Data Mining (DDM) [9] obtaining good accuracy results, consistent with the expected achievable
accuracy and number of examples required by the method. On the contrary, efficiency suffers for
large datasets as the cost of testing the models in the remaining examples is not negligible (i.e., the for
loop in Algorithm 1, line 6), although it can be alleviated by using GPUs [10]. More relevant for this
paper is the fact that these Windowing-based strategies based on J48, the Weka [11] implementation
of C4.5, show a strong correlation (−0.8175845) between the accuracy of the learned decision trees
and the number of examples used to induce them, i.e., the higher the accuracy obtained, the fewer the
number of examples used to induce the model. The windows in this method can be seen as samples
and reducing the size of the training sets, even up to a 95% of the available training data, still enables
accuracy values above 95%.

These promising results encourage the adoption of windowing as a sub-sampling method for
Distributed Data Mining. However, they suggest some issues that must be solved for such adoption.
The first one is the generalization of windowing beyond decision trees. Does windowing behave
similarly when using different models and inductive algorithms? The first contribution of this paper
is to corroborate the correlation between accuracy and the size of the window, i.e., the number of
examples used to induce the model, when using inductive algorithms of different nature, showing that
the advantages of windowing as a sub-sampling method can be generalized beyond decision trees.
The second issue is the need of a deeper understanding of the behavior of windowing. How is that such
a big reduction in the number of training examples, maintains acceptable levels of accuracy? This is
particularly interesting as we have pointed out that high levels of accuracy correlate with smaller
windows. The second contribution of the paper is thus to approach such a question in terms of the
informational properties of both the windows and the models obtained by the method. These properties
do not unfortunately correlate with the obtained accuracy of windowing and suggest the study of
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the evolution of the windows over as future work. Finally, a comparison with traditional methods
as random, stratified, and balanced samplings, provides a better understanding of windowing and
evaluates its adoption as an alternative sampling method. Under equal conditions, i.e., same original
full dataset and size of the sample, windowing shows to be significantly more accurate than the
traditional samplings and comparable to balanced sampling in terms of AUC. The paper is organized
as follows: Section 2 introduces the adopted materials and methods; Section 3 presents the obtained
results; and Section 4 discusses conclusions and future work.

2. Materials and Methods

This section describes the implementation of windowing used in this work, as included in
JaCa-DDM; the datasets used in experimentation; and the experiments themselves.

2.1. Windowing in JaCa-DDM

Because of our interest in Distributed Data Mining settings, JaCa-DDM (https://github.com/
xl666/jaca-ddm) was adopted to run our experiments. This tool [9] defines a set of windowing-based
strategies using J48, the Weka [11] implementation of C4.5, as inductive algorithm. Among them,
the Counter strategy is the most similar to the original formulation of windowing, with the exception of:

1. The dataset may be distributed in different sites, instead of the traditional approach based on a
single dataset in a single site.

2. The loop for collecting the misclassified examples to be added to the window is performed by a set
of agents using copies of the model distributed among the available sites, in a round-robin fashion.

3. The initial window is a stratified sample, instead of a random one.
4. An auto-adjustable stop criteria is combined with a configurable maximum number of iterations.

The configuration of the strategy (Table 1) used for all the experiments reported in this paper,
is adopted from the literature [10].

Table 1. Configuration of the counter strategy. Adopted from Limón et al. [10].

Parameter Value

Classifier J48
Pruning True
Number of nodes 8
Maximum number of rounds 15
Initial percentage for the window 0.20
Validation percentage for the test 0.25
Change step of accuracy every round 0.35

2.2. Datsets

Table 2 lists the datasets selected from the UCI [12] and MOA [13] repositories to conduct our
experiments. They vary in the number of instances, attributes, and class’ values; as well as in the type of
the attributes. Some of them are affected by missing values. The literature [10] reports experiments on
larger datasets, up to 4.8× 106 instances, exploiting GPUs. However, datasets with higher dimensions
are problematic, e.g., imdb-D with 1002 attributes does not converge using the Counter strategy.

https://github.com/xl666/jaca-ddm
https://github.com/xl666/jaca-ddm
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Table 2. Datasets, adopted from UCI and MOA.

Dataset Instances Attributes Attribute Type Missing Values Classes

Adult 48842 15 Mixed Yes 2
Australian 690 15 Mixed No 2
Breast 683 10 Numeric No 2
Diabetes 768 9 Mixed No 2
Ecoli 336 8 Numeric No 8
German 1000 21 Mixed No 2
Hypothyroid 3772 30 Mixed Yes 4
Kr-vs-kp 3196 37 Numeric No 2
Letter 20000 17 Mixed No 26
Mushroom 8124 23 Nominal Yes 2
Poker-lsn 829201 11 Mixed No 10
Segment 2310 20 Numeric No 7
Sick 3772 30 Mixed Yes 2
Splice 3190 61 Nominal No 3
Waveform5000 5000 41 Numeric No 3

2.3. Experiments

Two experiments were designed to cope with the issues approached by this work,
i.e., the generalization of windowing beyond decision trees; a deeper understanding of its behavior
in informational terms; and the comparison with traditional sampling methods. All of them were
executed on a Intel Core i5-8300H at 2.3GHz, up to 3.9GHz with 8Gb DDR4. 8 distributed sites were
simulated on this machine. JaCa-DDM also allows the adoption of real distributed sites over a network,
but the aspects of windowing we study here, are not affected by simulating distribution.

2.3.1. On the Generalization of Windowing

The first experiment seeks to corroborate the correlation between the accuracy of the learned
model and the amount of instances used to induce the model. It attempts to provide practical evidence
about the generalization of windowing. For this, different Weka classifiers are adopted that replace
J48. JaCa-DDM allows easy replacement and configuration of the new classifier artifacts of the
system, namely:

Naive Bayes. A probabilistic classifier based on Bayes’ theorem with a strong assumption of
independence among attributes [14].

jRip. An inductive rule learner based on RIPPER that builds a set of rules while minimizing the
amount of error [15].

Multilayer-perceptron. A multi-layer perceptron trained by backpropagation with sigmoid nodes
except for numeric classes, in which case the output nodes become unthresholded linear
units [16].

SMO. An implementation of John Platt’s sequential minimal optimization algorithm for training a
support vector classifier [17].

All classifiers are induced by running a 10-fold stratified cross-validation on each dataset,
then observing the average accuracy of the obtained models and the average percentage of the
original dataset used to induce the model, i.e., 100% means the full original dataset was used to create
the window.

2.3.2. On the Properties of Samples and Models Obtained by Windowing

The second experiment pursues a deeper understanding of the informational properties of the
computed models, as well as those of the samples obtained by Windowing, i.e., the final windows.
For this, given the positive results of the first experiment, we focus exclusively on decision trees (J48),
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for which different metrics to evaluate performance, complexity and data compression are well known.
They include:

• The model accuracy defined as the percentage of correctly classified instances.

TP + TN
TP + FP + TN + FN

(1)

where TP, TN, FP and FN respectively stand for the true positive, true negative, false positive,
and false negative classifications using the test data.

• The metric AUC defined as the probability of a random instance to be correctly classified [18].

AUC =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(2)

Even though this measure was conceived for binary classification problems. Foster Provost
[19] proposes an implementation for multi-class problems based in the weighted average of
AUC metrics for every class using a one-against-all approach, and the weight for every AUC is
calculated as the class’ appearance frequency in the data p(ci).

AUCtotal = ∑
ci∈C

AUC(ci) · p(ci) (3)

• The MDL principle states that the best model to infer from a dataset is the one which minimizes
the sum of the length of the model L(H), and the length of the data when encoded using the
theory as a predictor for the data L(D|H) [20].

MDL = L(H) + L(D|H) (4)

For decision trees, Quinlan [21] proposes the next definition:

1. The number of bits needed to encode a tree is:

L(H) = nnodes ∗ (1 + ln(nattributes)) + nleaves(1 + ln(nc1asses)) (5)

where nnodes, nattributes, nleaves and nc1asses stand for the number of nodes, attributes,
leaves and classes. This encoding uses a recursive top-down, depth-first procedure, where a
tree which is not a leaf is encoded by a sequence of 1, the attribute code at his root, and the
respective encodings of the subtrees. If a tree or subtree is a leaf, its enconding is a sequence
of 0, and the class code.

2. The number of bits needed to encode the data using the decision tree is:

L(D|H) = ∑
l∈Leaves

log2(b + 1) + log2

((
n
k

))
(6)

where n is the number of instances, k is the number of positives instances for binary
classification and b is a known a priori upper bound on k, typically b = n. For non-binary
classification, Quinlan proposes a iterative approach where exceptions are sorted by their
frequency, and then codified with the previous formula.

• The Kullback–Leibler divergence (DKL) [22] is defined as:

DKL(P||Q) = ∑
x∈X

P(x)log2

(
P(x)
Q(x)

)
(7)

where P and Q are probability distributions for the full dataset and the window, both are defined
on the same probability space X, and x represents a class in the distribution. Instead of using



Math. Comput. Appl. 2020, 25, 39 6 of 19

a model to represent a conditional distribution of variables, as usual, we focus on the class
distribution, computed as the marginal probability. Values closer to zero reflect higher similarity.

• Sim1 [23] is a similarity measure between datasets defined as:

sim1(Di, Dj) =
|Item(Di) ∩ Item(Dj)|
|Item(Di) ∪ Item(Dj)|

(8)

where Di is the window and Dj is the full dataset; and Item(D) denotes the set of pairs
attribute-value occurring in D. Values closer to one reflect higher similarity.

These metrics are used to compare the sample (the window) and the model computed by
windowing, against those obtained as follows, once a random sample of the original data set is
reserved as test set:

• Without sampling, using all the available data to induce the model.
• By Random sampling, where any instance has the same selection probability [24].
• By Stratified random sampling, where the instances are subdivided by their class into subgroups,

the number of selected instances per subgroup is defined as the division of the sample size by the
number of instances [24].

• By Balanced random sampling, as stratified random sampling, the instances are subdivided by
their class into subgroups, but the number of selected instances per subgroup is defined as the
division of the sample size by the number of subgroups, this allows the same number of instances
per class [24].

Ten repetitions of 10-fold stratified cross-validation are run on each dataset. For a fair comparison,
all the samples have the size of the window being compared. Statistical validity of the results is
established following the method proposed by Demšar [25]. This approach enables the comparison
of multiple algorithms on multiple data sets. It is based on the use of the Friedman test with a
corresponding post-hoc test. Let Rj

i be the rank of the jth of k algorithms on the ith of N data sets.

The Friedman test [26,27] compares the average ranks of algorithms, Rj = 1
N ∑i Rj

i . Under the
null-hypothesis, which states that all the algorithms are equivalent and so their ranks Rj should be
equal, the Friedman statistic:

χ2
F =

12N
k(k + 1)

[
∑

j
R2

j −
k(k + 1)2

4

]
(9)

is distributed according to χ2
F with k− 1 degrees of freedom, when N and k are big enough (N > 10 and

k > 5). For a smaller number of algorithms and data sets, exact critical values have been computed [28].
Iman and Davenport [29] showed that Friedman’s χ2

F is undesirably conservative and derived an
adjusted statistic:

Ff =
(N − 1)× χ2

F
N × (k− 1)− χ2

F
(10)

which is distributed according to the F-distribution with k− 1 and (k− 1)(N − 1) degrees of freedom.
If the null hypothesis of similar performances is rejected, then the Nemenyi post-hoc test is realized
for pairwise comparisons. The performance of two classifiers is significantly different if their
corresponding average ranks differ by at least the critical difference:

CD = qα

√
k(k + 1)

6N
(11)

where critical values qα are based on the Studentized range statistic divided by
√

2.
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For the comparison of multiple classifiers, the results of the post-hoc tests can be visually
represented with a simple critical distance diagram. This type of visualization will be described
in the Statistical Tests in Section 3.

3. Results

Results are organized accordingly to the following issues:

• Generalization of the behavior of windowing, i.e., high accuracy correlating with fewer training
examples used to induce the model, when other inductive algorithms, apart of J48, are adopted.

• Informational properties of the samples obtained by different methods, based on the
Kullback–Leibler divergence and the attribute-value similitude.

• Properties of the models induced with the samples, in terms of their size, complexity, and data
compression, which supplies information about their data fitting capacity.

• Predictive performance of the induced models in terms of accuracy and the AUC.
• Statistical tests about significant gains produced by windowing using the former metrics.

3.1. Windowing Generalization

Figure 1 shows a strong negative correlation between the number of training instances used
to induce the models, expressed as a percentage with respect to the totality of available examples,
and the accuracy of the induced model. Such correlation exists, independently of the adopted inductive
algorithm. These results are consistent with the behavior of windowing when using J48, as reported in
the literature [9] and corroborates that under windowing, in general, the models with higher accuracy
use less examples to be induced.
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Figure 1. Correlation between accuracy and percentage of used training examples when windowing.
J48 = −0.98, NB = −0.96, jRip = −0.98, MP = −0.98, and SMO = −0.99. In general, the models with
higher accuracy use less examples to be induced.
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However, accuracy is affected by the adopted inductive algorithm, e.g., Hypothyroid is
approached very well by jRip (99.23 ± 0.48 of accuracy) requiring few examples (5% of the full
dataset); while Multilayer-Perceptron is not quite successful in this case (92.26 ± 2.75 of accuracy)
requiring more examples (24%). This behavior is also observed between SMO and jRip for
Waveform5000. These observations motivated analyzing the properties of the samples and induced
models, as described in the following subsections. Table 3 shows the accuracy results in detail and
Table 4 shows the number of examples used to induce the models, best results are highlighted in
gray. Appendix A shows the accuracy values for models without using windowing under a 10-fold
cross-validation. Windowing accuracies are comparable to those obtained without using windowing.
Table 7 also corroborate this this for the J48 classifier.

Table 3. Average windowing accuracy under a 10-fold cross validation (na = not available).

J48 NB jRip MP SMO
Adult 86.17 ± 0.55 84.54 ± 0.62 na na na
Australian 85.21 ± 4.77 85.79 ± 4.25 85.94 ± 3.93 81.74 ± 6.31 85.80 ± 4.77
Breast 94.42 ± 3.97 97.21 ± 2.34 95.31 ± 2.75 95.45 ± 3.14 96.33 ± 3.12
Diabetes 73.03 ± 3.99 76.03 ± 4.33 71.74 ± 7.67 72.12 ± 4.00 76.04 ± 3.51
Ecoli 82.72 ± 6.81 83.93 ± 7.00 81.22 ± 6.63 82.12 ± 7.49 84.53 ± 4.11
German 71.10 ± 5.40 75.20 ± 2.82 70.20 ± 3.85 69.60 ± 4.84 75.80 ± 3.12
Hypothyroid 99.46 ± 0.17 95.36 ± 0.99 99.23 ± 0.48 92.26 ± 2.75 94.30 ± 0.53
Kr-vs-kp 99.15 ± 0.66 96.65 ± 0.84 98.46 ± 0.95 98.72 ± 0.54 96.62 ± 0.75
Letter 85.79 ± 1.24 69.28 ± 1.26 85.31 ± 1.06 na na
Mushroom 100.00 ± 0.00 99.80 ± 0.16 100.00 ± 0.00 100.00 ± 0.00 100.0 ± 0.00
Poker-lsn 99.75 ± 0.07 60.02 ± 0.42 na na na
Segment 96.53 ± 1.47 84.24 ± 1.91 95.54 ± 1.55 96.10 ± 1.15 92.42 ± 1.87
Sick 98.64 ± 0.53 96.34 ± 1.44 97.93 ± 0.95 96.32 ± 1.04 96.71 ± 0.77
Splice 94.04 ± 0.79 95.32 ± 1.07 92.75 ± 2.11 na 92.41 ± 1.34
Waveform5000 73.06 ± 2.55 82.36 ± 1.64 77.02 ± 1.59 na 85.94 ± 1.32

Table 4. Average size of the final window (the sample) under a 10-fold cross validation, in terms of the
percentage of the full dataset used for induction (na = not available).

J48 NB jRip MP SMO
Adult 0.30 ± 0.01 0.21 ± 0.00 na na na
Australian 0.31 ± 0.02 0.25 ± 0.01 0.33 ± 0.02 0.39 ± 0.04 0.27 ± 0.01
Breast 0.17 ± 0.01 0.06 ± 0.00 0.14 ± 0.01 0.11 ± 0.01 0.09 ± 0.01
Diabetes 0.54 ± 0.05 0.40 ± 0.02 0.52 ± 0.04 0.48 ± 0.03 0.42 ± 0.02
Ecoli 0.38 ± 0.03 0.27 ± 0.01 0.40 ± 0.03 0.31 ± 0.03 0.29 ± 0.02
German 0.56 ± 0.04 0.43 ± 0.01 0.59 ± 0.02 0.58 ± 0.02 0.47 ± 0.02
Hypothyroid 0.05 ± 0.00 0.12 ± 0.01 0.05 ± 0.00 0.24 ± 0.01 0.12 ± 0.01
Kr-vs-kp 0.08 ± 0.01 0.16 ± 0.01 0.13 ± 0.00 0.08 ± 0.00 0.12 ± 0.00
Letter 0.35 ± 0.02 0.38 ± 0.00 0.39 ± 0.01 na na
Mushroom 0.03 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.02 ± 0.00
Poker-lsn 0.05 ± 0.00 0.59 ± 0.00 na na na
Segment 0.16 ± 0.01 0.22 ± 0.01 0.19 ± 0.01 0.14 ± 0.01 0.18 ± 0.00
Sick 0.07 ± 0.00 0.10 ± 0.01 0.08 ± 0.00 0.11 ± 0.01 0.10 ± 0.00
Splice 0.26 ± 0.01 0.11 ± 0.00 0.25 ± 0.01 na 0.19 ± 0.00
Waveform5000 0.59 ± 0.02 0.22 ± 0.01 0.52 ± 0.00 na 0.26 ± 0.01

Large datasets such as as Adult, Letter, Poker-Lsn, Splice, and Waveform5000 did not finish on
reasonable time when using jRip, Multilayer-Perceptron and SMO, with and without windowing.
In such cases, results are reported as not available (na). This might be solved by running the
experiments in a real cluster of 8 nodes, instead of simulating the sites in a single machine, as done
here, but it is not relevant for the purposes of this work. In the following results, Poker-lsn dataset was
excluded because the cross-validations runs do not finish on a reasonable time, this might be solved
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with more computational power. The results were kept this way because they illustrate that some
classifiers exhibit a computational cost which precludes convergence.

3.2. Samples Properties

For each dataset considered in this work, Table 5 shows some properties of the samples obtained
by the following methods: windowing, as described before; the Full-Dataset under a 10-folds
cross-validation (90% of all available data); and the random, stratified, and balanced samplings.
Properties include the size of the sample in terms of the number of instances; the standard deviation of
the class distribution (St.Dv.C.D.); and two measures of similarity between the samples and the original
dataset: The Kullback–Leibler divergence and the metric sim1. With the exception of Full-Dataset,
the size of the rest of the samples is determined by the windowing method and its autostop method.
For the sake of fairness, windowing is executed first and the size of the sample obtained in this way is
adopted for the rest of the sampling methods. Reductions in the size of the training set are as big as
97% of the available data (Hypothyroid).

According to Kullback–Leibler Divergence, windowing is the method that skews more the
original class distribution in non-balanced datasets. It is also observed that the class distribution on
the windows is more balanced, and its effectiveness probably depends on the number of available
examples for the minority classes. For instance, Full-Dataset shows an unbalanced class distribution
(St.Dv.C.D. = 0.449) in Hypothyroid, while windowing got a coefficient of 0.293. Windowing can not
completely balance the number of examples per class since the percentage of the available examples
for the minority classes are around of 5%. The random sampling, the Full-Dataset, and the stratified
sampling do not tend to modify the class distribution. However, it does not seem to be a correlation
between this coefficient and the obtained accuracy.

Full-Dataset is, without surprise, the sample that gathers more attribute/values pairs from the
original data, since it uses 90% of the available data. It is included in the results exclusively for
comparison with the rest of the sampling methods. Table 5 also show that windowing tends to collect
more information content in most of the datasets compared with all the sampling, this is probably result
of the heuristic nature of windowing. There are some datasets, like Breast and German, where all the
techniques have one as the measured value of Sim1. Unfortunately, as in the previous case, this notion
of similarity neither seems to correlate with the observed accuracy, for instance, as mentioned, for Breast
and German all the sampling methods gathers all the original pairs attribute-value (Sim1 = 1.0),
but while the accuracy obtained for Breast is around 95%, when using German it is around 71%.
In concordance with these results, the window for Breast uses 17% of the available examples,
while German uses 64% (Table 5).

Table 5. Samples properties.

Dataset Method Instances St. Dv. C.D. KL Div Sim1
Adult Windowing 14502.840 ± 574.266 0.083 ± 0.004 0.128 ± 0.004 0.386 ± 0.012
Adult Full-Dataset 43957.800 ± 0.402 0.369 ± 0.000 0.000 ± 0.000 0.935 ± 0.001
Adult Random-sampling 14502.840 ± 574.266 0.374 ± 0.049 0.005 ± 0.005 0.418 ± 0.013
Adult Stratified-sampling 14502.840 ± 574.266 0.369 ± 0.000 0.000 ± 0.000 0.418 ± 0.013
Adult Balanced-sampling 14502.840 ± 574.266 0.000 ± 0.000 0.206 ± 0.000 0.400 ± 0.013
Australian Windowing 215.440 ± 14.363 0.031 ± 0.020 0.017 ± 0.008 0.999 ± 0.006
Australian Full-Dataset 621.000 ± 0.000 0.078 ± 0.001 0.000 ± 0.000 0.999 ± 0.005
Australian Random-sampling 215.440 ± 14.363 0.080 ± 0.047 0.004 ± 0.005 0.986 ± 0.016
Australian Stratified-sampling 215.440 ± 14.363 0.078 ± 0.004 0.000 ± 0.000 0.986 ± 0.016
Australian Balanced-sampling 215.440 ± 14.363 0.001 ± 0.002 0.009 ± 0.000 0.987 ± 0.016
Breast Windowing 109.210 ± 14.732 0.043 ± 0.030 0.086 ± 0.031 1.000 ± 0.000
Breast Full-Dataset 614.700 ± 0.461 0.212 ± 0.000 0.000 ± 0.000 1.000 ± 0.000
Breast Random-sampling 109.210 ± 14.732 0.224 ± 0.107 0.019 ± 0.017 1.000 ± 0.000
Breast Stratified-sampling 109.210 ± 14.732 0.215 ± 0.007 0.000 ± 0.000 1.000 ± 0.000
Breast Balanced-sampling 109.210 ± 14.732 0.003 ± 0.003 0.066 ± 0.003 1.000 ± 0.000
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Table 5. Cont.

Dataset Method Instances St. Dv. C.D. KL Div Sim1
Diabetes Windowing 436.260 ± 27.768 0.087 ± 0.022 0.025 ± 0.009 0.751 ± 0.028
Diabetes Full-Dataset 691.200 ± 0.402 0.213 ± 0.001 0.000 ± 0.000 0.954 ± 0.004
Diabetes Random-sampling 436.260 ± 27.768 0.214 ± 0.021 0.001 ± 0.001 0.763 ± 0.028
Diabetes Stratified-sampling 436.260 ± 27.768 0.215 ± 0.002 0.000 ± 0.000 0.766 ± 0.028
Diabetes Balanced-sampling 436.260 ± 27.768 0.001 ± 0.001 0.067 ± 0.001 0.770 ± 0.028
Ecoli Windowing 126.640 ± 8.579 0.109 ± 0.005 0.182 ± 0.055 0.761 ± 0.026
Ecoli Full-Dataset 302.400 ± 0.492 0.145 ± 0.000 0.001 ± 0.001 0.979 ± 0.006
Ecoli Random-sampling 126.640 ± 8.579 0.147 ± 0.010 0.007 ± 0.010 0.763 ± 0.025
Ecoli Stratified-sampling 126.640 ± 8.579 0.154 ± 0.004 0.013 ± 0.003 0.758 ± 0.027
Ecoli Balanced-sampling 126.640 ± 8.579 0.099 ± 0.004 0.113 ± 0.028 0.781 ± 0.028
German Windowing 584.750 ± 25.308 0.119 ± 0.012 0.041 ± 0.006 1.000 ± 0.000
German Full-Dataset 900.000 ± 0.000 0.283 ± 0.000 0.000 ± 0.000 1.000 ± 0.000
German Random-sampling 584.750 ± 25.308 0.284 ± 0.022 0.001 ± 0.001 1.000 ± 0.000
German Stratified-sampling 584.750 ± 25.308 0.283 ± 0.001 0.000 ± 0.000 1.000 ± 0.000
German Balanced-sampling 584.750 ± 25.308 0.055 ± 0.022 0.079 ± 0.015 1.000 ± 0.000
Hypothyroid Windowing 151.680 ± 9.619 0.293 ± 0.017 0.262 ± 0.047 0.428 ± 0.017
Hypothyroid Full-Dataset 3394.800 ± 0.402 0.449 ± 0.000 0.000 ± 0.000 0.979 ± 0.005
Hypothyroid Random-sampling 151.680 ± 9.619 0.580 ± 0.149 0.212 ± 0.103 0.387 ± 0.020
Hypothyroid Stratified-sampling 151.680 ± 9.619 0.516 ± 0.007 0.000 ± 0.001 0.387 ± 0.013
Hypothyroid Balanced-sampling 151.680 ± 9.619 0.191 ± 0.004 0.668 ± 0.023 0.435 ± 0.016
Kr-vs-kp Windowing 242.550 ± 18.425 0.050 ± 0.036 0.010 ± 0.012 0.998 ± 0.004
Kr-vs-kp Full-Dataset 2876.400 ± 0.492 0.031 ± 0.000 0.000 ± 0.000 0.999 ± 0.004
Kr-vs-kp Random-sampling 242.550 ± 18.425 0.221 ± 0.130 0.106 ± 0.099 0.975 ± 0.013
Kr-vs-kp Stratified-sampling 242.550 ± 18.425 0.032 ± 0.003 0.000 ± 0.000 0.977 ± 0.009
Kr-vs-kp Balanced-sampling 242.550 ± 18.425 0.001 ± 0.001 0.001 ± 0.000 0.977 ± 0.008
Letter Windowing 7390.450 ± 491.435 0.008 ± 0.000 0.037 ± 0.002 0.989 ± 0.006
Letter Full-Dataset 18000.000 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.999 ± 0.002
Letter Random-sampling 7390.450 ± 491.435 0.007 ± 0.001 0.022 ± 0.009 0.983 ± 0.008
Letter Stratified-sampling 7390.450 ± 491.435 0.000 ± 0.000 0.000 ± 0.000 0.985 ± 0.007
Letter Balanced-sampling 7390.450 ± 491.435 0.001 ± 0.000 0.001 ± 0.000 0.984 ± 0.006
Mushroom Windowing 219.490 ± 16.871 0.043 ± 0.033 0.004 ± 0.005 0.968 ± 0.021
Mushroom Full-Dataset 7311.600 ± 0.492 0.025 ± 0.000 0.000 ± 0.000 1.000 ± 0.000
Mushroom Random-sampling 219.490 ± 16.871 0.504 ± 0.244 2.083 ± 1.852 0.833 ± 0.072
Mushroom Stratified-sampling 219.490 ± 16.871 0.026 ± 0.004 0.000 ± 0.000 0.903 ± 0.032
Mushroom Balanced-sampling 219.490 ± 16.871 0.002 ± 0.002 0.001 ± 0.000 0.902 ± 0.033
Segment Windowing 371.280 ± 27.458 0.104 ± 0.008 0.390 ± 0.076 0.279 ± 0.015
Segment Full-Dataset 2079.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.938 ± 0.003
Segment Random-sampling 371.280 ± 27.458 0.050 ± 0.007 0.105 ± 0.144 0.310 ± 0.019
Segment Stratified-sampling 371.280 ± 27.458 0.002 ± 0.001 0.000 ± 0.000 0.315 ± 0.018
Segment Balanced-sampling 371.280 ± 27.458 0.002 ± 0.001 0.000 ± 0.000 0.315 ± 0.018
Sick Windowing 264.600 ± 17.420 0.305 ± 0.028 0.233 ± 0.032 0.565 ± 0.019
Sick Full-Dataset 3394.800 ± 0.402 0.621 ± 0.000 0.000 ± 0.000 0.979 ± 0.005
Sick Random-sampling 264.600 ± 17.420 0.623 ± 0.066 0.015 ± 0.014 0.483 ± 0.018
Sick Stratified-sampling 264.600 ± 17.420 0.623 ± 0.002 0.000 ± 0.000 0.483 ± 0.014
Sick Balanced-sampling 264.600 ± 17.420 0.002 ± 0.001 0.665 ± 0.002 0.495 ± 0.014
Splice Windowing 835.300 ± 29.689 0.072 ± 0.011 0.036 ± 0.009 0.969 ± 0.043
Splice Full-Dataset 2871.000 ± 0.000 0.169 ± 0.047 0.000 ± 0.000 0.987 ± 0.034
Splice Random-sampling 835.300 ± 29.689 0.161 ± 0.000 0.014 ± 0.013 0.890 ± 0.060
Splice Stratified-sampling 835.300 ± 29.689 0.161 ± 0.001 0.000 ± 0.000 0.862 ± 0.036
Splice Balanced-sampling 835.300 ± 29.689 0.001 ± 0.001 0.104 ± 0.001 0.871 ± 0.046
Waveform-5000 Windowing 3263.590 ± 330.000 0.006 ± 0.004 0.000 ± 0.000 0.940 ± 0.018
Waveform-5000 Full-Dataset 4500.000 ± 0.000 0.004 ± 0.000 0.000 ± 0.000 0.983 ± 0.001
Waveform-5000 Random-sampling 3263.590 ± 330.000 0.018 ± 0.010 0.002 ± 0.002 0.932 ± 0.019
Waveform-5000 Stratified-sampling 3263.590 ± 330.000 0.004 ± 0.000 0.000 ± 0.000 0.932 ± 0.019
Waveform-5000 Balanced-sampling 3263.590 ± 330.000 0.000 ± 0.000 0.000 ± 0.000 0.932 ± 0.019
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3.3. Model Complexity and Data Compression

Table 6 shows the results for the MDL, calculated using the test dataset. Respecting the number
of bits required to encode a tree (L(H)), Windowing and Full-Dataset tend to induce more complex
models, i.e, trees with more nodes. This is probably because windowing favors the search for more
difficult patterns in the set of available instances, which require more complex models to be expressed.
Respecting the number of bits required to encode the test data, given the induced decision tree,
(L(D|H)) a better compression is achieved using windowing and Full-Dataset than when using the
traditional samplings. Big differences in data compression using windowing are exhibit in datasets
like Mushroom, Segment, and Waveform-5000. One possible explanation for this is that instances
gathered by sampling techniques do not capture the data nature because of their random selection and
the small number of instances in the sample.

The sum of the former metrics, the MDL, reports bigger models in most of the datasets when
using windowing and Full-Dataset. This result does not represent an advantage, but properties such
as the predictive performance also play an important role in model selection.

Table 6. Model complexity and test data compression.

Dataset Method L(H) L(D|H) MDL
Adult Windowing 1361.599 ± 465.850 2366.019 ± 59.709 3727.618 ± 483.653
Adult Full-Dataset 2077.010 ± 282.565 2374.002 ± 49.985 4451.012 ± 270.561
Adult Random-sampling 1009.386 ± 276.429 2420.278 ± 56.458 3429.664 ± 264.703
Adult Stratified-sampling 1031.172 ± 181.155 2410.870 ± 49.932 3442.042 ± 186.437
Adult Balanced-sampling 1351.736 ± 265.668 2423.024 ± 44.271 3774.759 ± 274.906
Australian Windowing 77.299 ± 29.067 41.284 ± 6.849 118.582 ± 30.088
Australian Full-Dataset 66.820 ± 16.934 41.044 ± 6.711 107.864 ± 17.430
Australian Random-sampling 45.151 ± 18.592 41.820 ± 6.916 86.971 ± 19.120
Australian Stratified-sampling 50.313 ± 22.016 41.836 ± 6.776 92.149 ± 21.220
Australian Balanced-sampling 44.603 ± 22.878 42.327 ± 6.764 86.929 ± 22.830
Breast Windowing 46.541 ± 13.199 25.904 ± 4.584 72.445 ± 12.435
Breast Full-Dataset 58.757 ± 7.942 25.338 ± 5.280 84.095 ± 8.195
Breast Random-sampling 22.301 ± 6.555 29.008 ± 7.229 51.309 ± 7.316
Breast Stratified-sampling 23.991 ± 6.915 28.631 ± 6.720 52.622 ± 8.350
Breast Balanced-sampling 22.767 ± 7.801 28.191 ± 5.710 50.959 ± 8.137
Diabetes Windowing 59.000 ± 37.207 65.437 ± 5.227 124.437 ± 37.477
Diabetes Full-Dataset 126.620 ± 46.019 64.383 ± 5.161 191.003 ± 45.988
Diabetes Random-sampling 95.960 ± 38.989 65.674 ± 4.884 161.634 ± 39.119
Diabetes Stratified-sampling 94.940 ± 39.261 64.354 ± 5.965 159.294 ± 39.505
Diabetes Balanced-sampling 104.840 ± 36.621 65.263 ± 5.003 170.103 ± 36.829
Ecoli Windowing 99.328 ± 23.152 29.959 ± 7.767 129.287 ± 23.257
Ecoli Full-Dataset 144.454 ± 19.804 27.648 ± 6.460 172.102 ± 18.623
Ecoli Random-sampling 69.348 ± 16.853 33.969 ± 9.853 103.317 ± 15.614
Ecoli Stratified-sampling 65.678 ± 16.214 34.174 ± 10.710 99.852 ± 16.457
Ecoli Balanced-sampling 83.869 ± 20.904 30.357 ± 7.087 114.226 ± 20.376
German Windowing 315.252 ± 60.182 82.866 ± 5.220 398.118 ± 60.077
German Full-Dataset 287.566 ± 54.049 83.857 ± 5.339 371.423 ± 53.413
German Random-sampling 211.627 ± 51.692 83.245 ± 5.156 294.871 ± 51.783
German Stratified-sampling 212.684 ± 54.545 83.006 ± 5.125 295.689 ± 53.830
German Balanced-sampling 238.184 ± 51.813 84.412 ± 5.352 322.596 ± 51.356
Hypothyroid Windowing 84.812 ± 19.108 28.291 ± 6.449 113.102 ± 20.727
Hypothyroid Full-Dataset 122.317 ± 10.791 27.105 ± 6.877 149.422 ± 10.562
Hypothyroid Random-sampling 15.667 ± 15.278 189.232 ± 110.454 204.899 ± 96.402
Hypothyroid Stratified-sampling 30.645 ± 6.465 67.493 ± 22.683 98.138 ± 22.336
Hypothyroid Balanced-sampling 45.353 ± 10.448 61.502 ± 18.798 106.854 ± 18.199
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Table 6. Cont.

Dataset Method L(H) L(D|H) MDL
Kr-vs-kp Windowing 198.034 ± 14.570 69.919 ± 4.871 267.953 ± 14.944
Kr-vs-kp Full-Dataset 219.807 ± 16.870 69.345 ± 4.277 289.152 ± 17.014
Kr-vs-kp Random-sampling 64.438 ± 18.816 98.961 ± 21.032 163.399 ± 21.636
Kr-vs-kp Stratified-sampling 72.664 ± 18.341 92.724 ± 15.119 165.388 ± 15.947
Kr-vs-kp Balanced-sampling 73.848 ± 18.721 91.842 ± 14.262 165.690 ± 15.840
Letter Windowing 11862.644 ± 473.112 1248.697 ± 64.017 13111.341 ± 453.031
Letter Full-Dataset 12431.372 ± 180.896 1165.793 ± 38.869 13597.165 ± 182.617
Letter Random-sampling 7020.909 ± 385.222 1473.635 ± 81.356 8494.544 ± 358.576
Letter Stratified-sampling 7102.767 ± 358.000 1461.702 ± 80.161 8564.469 ± 328.131
Letter Balanced-sampling 7126.843 ± 381.507 1449.106 ± 76.567 8575.949 ± 354.232
Mushroom Windowing 79.249 ± 7.033 76.881 ± 4.163 156.130 ± 7.189
Mushroom Full-Dataset 77.237 ± 0.600 79.510 ± 1.744 156.747 ± 1.810
Mushroom Random-sampling 18.228 ± 19.552 461.838 ± 353.124 480.066 ± 337.153
Mushroom Stratified-sampling 31.126 ± 14.101 114.606 ± 23.525 145.732 ± 20.201
Mushroom Balanced-sampling 31.879 ± 15.063 113.501 ± 22.427 145.380 ± 17.422
Segment Windowing 348.723 ± 34.369 81.656 ± 10.719 430.379 ± 33.528
Segment Full-Dataset 365.928 ± 22.569 79.045 ± 9.609 444.973 ± 22.295
Segment Random-sampling 142.987 ± 22.538 135.754 ± 31.843 278.741 ± 31.578
Segment Stratified-sampling 142.715 ± 18.438 126.640 ± 24.516 269.356 ± 26.762
Segment Balanced-sampling 141.267 ± 17.852 127.325 ± 23.254 268.591 ± 26.010
Sick Windowing 170.530 ± 26.600 50.476 ± 8.212 221.005 ± 26.977
Sick Full-Dataset 182.701 ± 22.491 42.346 ± 7.910 225.047 ± 20.038
Sick Random-sampling 21.786 ± 16.605 80.715 ± 38.277 102.501 ± 24.810
Sick Stratified-sampling 31.126 ± 6.768 55.199 ± 13.736 86.325 ± 15.387
Sick Balanced-sampling 57.996 ± 17.446 60.045 ± 9.531 118.040 ± 18.444
Splice Windowing 725.951 ± 53.364 181.187 ± 11.871 907.139 ± 53.195
Splice Full-Dataset 745.146 ± 51.142 179.689 ± 11.014 924.834 ± 52.532
Splice Random-sampling 425.144 ± 52.153 187.097 ± 21.631 612.240 ± 47.209
Splice Stratified-sampling 443.339 ± 51.337 188.061 ± 19.286 631.400 ± 48.312
Splice Balanced-sampling 419.763 ± 41.676 188.473 ± 20.593 608.236 ± 40.687
Waveform-5000 Windowing 2418.668 ± 215.760 363.799 ± 56.499 2782.467 ± 224.433
Waveform-5000 Full-Dataset 2615.956 ± 94.305 415.810 ± 20.601 3031.766 ± 92.381
Waveform-5000 Random-sampling 1957.647 ± 203.398 413.447 ± 24.548 2371.094 ± 202.636
Waveform-5000 Stratified-sampling 1957.202 ± 199.174 417.104 ± 26.348 2374.306 ± 196.151
Waveform-5000 Balanced-sampling 1966.554 ± 193.650 417.152 ± 28.133 2383.706 ± 190.987

3.4. Predictive Performance

Table 7 shows the predictive performance in terms of accuracy and the AUC. Even though the
random, stratified and balanced samplings usually induce simpler models, the decision trees do
not seem to be more general than their windowing and Full-Dataset counterparts. In other words,
the predictive ability of decision trees induced with the traditional samplings are, most of the time,
lower than the models induced using windowing and Full-Dataset. Models induced with windowing
have the same accuracy as those obtained by Full-Dataset and, sometimes, they even show a higher
accuracy, e.g., waveform-500. In terms of AUC, windowing and Full-Dataset were the best samples,
but the balanced sampling is pretty close to their performance.

3.5. Statistical Tests

The figures in this section visualize the results of the post-hoc Nemenyi test for the metrics
previously shown in Tables 5–7. This compact, information-dense visualization, called as Critical
Difference diagram, consists on a main axis where the average rank of each methods is plotted along
with a line that represents the Critical Difference (CD). Methods separated by a distance shorter than
the CD are statistically indistinguishable, i.e., the evidence is not sufficient to conclude whether they
have a similar performance and are connected by a black line. In contrast, methods separated by
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a distance larger than the CD have a statistically significant difference in performance. The best
performing methods are those with lower rank values shown on the left of the figure.

Table 7. Predictive performance.

Dataset Method Test Acc Test AUC
Adult Windowing 86.355 ± 0.889 78.227 ± 1.161
Adult Full-Dataset 86.074 ± 0.390 77.080 ± 0.823
Adult Random-sampling 85.516 ± 0.423 76.131 ± 2.021
Adult Stratified-sampling 85.677 ± 0.401 76.680 ± 0.885
Adult Balanced-sampling 80.489 ± 0.722 81.956 ± 0.580
Australian Windowing 85.710 ± 4.355 85.471 ± 4.411
Australian Full-Dataset 86.536 ± 3.969 86.239 ± 4.041
Australian Random-sampling 85.101 ± 4.375 84.849 ± 4.517
Australian Stratified-sampling 85.391 ± 4.164 85.142 ± 4.266
Australian Balanced-sampling 85.536 ± 3.925 85.584 ± 3.854
Breast Windowing 94.829 ± 2.804 94.368 ± 3.117
Breast Full-Dataset 95.533 ± 2.674 95.058 ± 2.830
Breast Random-sampling 92.696 ± 3.821 91.687 ± 4.739
Breast Stratified-sampling 92.783 ± 3.485 91.956 ± 3.982
Breast Balanced-sampling 92.433 ± 3.558 92.301 ± 3.627
Diabetes Windowing 74.161 ± 4.864 70.041 ± 5.654
Diabetes Full-Dataset 74.756 ± 4.661 71.211 ± 5.027
Diabetes Random-sampling 72.280 ± 4.520 68.602 ± 5.403
Diabetes Stratified-sampling 73.222 ± 5.113 70.254 ± 5.721
Diabetes Balanced-sampling 71.018 ± 5.222 71.726 ± 4.937
Ecoli Windowing 82.777 ± 6.353 88.848 ± 4.134
Ecoli Full-Dataset 82.822 ± 5.467 88.873 ± 3.567
Ecoli Random-sampling 80.059 ± 6.268 86.924 ± 4.218
Ecoli Stratified-sampling 79.586 ± 6.227 86.721 ± 4.113
Ecoli Balanced-sampling 79.405 ± 6.360 86.981 ± 4.034
German Windowing 71.660 ± 4.608 63.119 ± 5.518
German Full-Dataset 71.300 ± 3.765 62.605 ± 4.388
German Random-sampling 71.800 ± 3.782 62.867 ± 4.408
German Stratified-sampling 71.640 ± 3.799 62.857 ± 4.546
German Balanced-sampling 67.820 ± 4.448 66.833 ± 4.014
Hypothyroid Windowing 99.483 ± 0.346 98.880 ± 1.204
Hypothyroid Full-Dataset 99.528 ± 0.353 98.871 ± 1.259
Hypothyroid Random-sampling 94.340 ± 2.524 70.634 ± 23.378
Hypothyroid Stratified-sampling 96.877 ± 1.652 94.594 ± 4.769
Hypothyroid Balanced-sampling 96.236 ± 1.831 97.598 ± 1.421
Kr-vs-kp Windowing 99.302 ± 0.583 99.294 ± 0.594
Kr-vs-kp Full-Dataset 99.415 ± 0.433 99.412 ± 0.433
Kr-vs-kp Random-sampling 94.171 ± 2.959 94.139 ± 3.061
Kr-vs-kp Stratified-sampling 94.956 ± 1.766 94.956 ± 1.802
Kr-vs-kp Balanced-sampling 94.984 ± 1.727 94.996 ± 1.756
Letter Windowing 87.161 ± 2.074 93.324 ± 1.078
Letter Full-Dataset 87.943 ± 0.720 93.731 ± 0.375
Letter Random-sampling 82.216 ± 1.006 90.753 ± 0.523
Letter Stratified-sampling 82.376 ± 1.148 90.836 ± 0.597
Letter Balanced-sampling 82.430 ± 1.160 90.864 ± 0.603
Mushroom Windowing 100.000 ± 0.000 100.000 ± 0.000
Mushroom Full-Dataset 100.000 ± 0.000 100.000 ± 0.000
Mushroom Random-sampling 73.746 ± 23.610 73.625 ± 23.684
Mushroom Stratified-sampling 98.367 ± 0.813 98.312 ± 0.831
Mushroom Balanced-sampling 98.424 ± 0.819 98.376 ± 0.831
Segment Windowing 96.329 ± 1.655 97.859 ± 0.965
Segment Full-Dataset 96.710 ± 1.335 98.081 ± 0.779
Segment Random-sampling 90.719 ± 3.181 94.586 ± 1.855
Segment Stratified-sampling 91.515 ± 2.074 95.051 ± 1.210
Segment Balanced-sampling 91.455 ± 1.984 95.015 ± 1.157
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Table 7. Cont.

Dataset Method Test Acc Test AUC
Sick Windowing 98.688 ± 0.640 93.667 ± 3.370
Sick Full-Dataset 98.741 ± 0.523 93.662 ± 3.323
Sick Random-sampling 96.193 ± 1.887 75.662 ± 19.843
Sick Stratified-sampling 97.301 ± 1.051 86.908 ± 6.166
Sick Balanced-sampling 94.785 ± 1.855 94.812 ± 2.641
Splice Windowing 94.132 ± 1.682 95.626 ± 1.344
Splice Full-Dataset 94.216 ± 1.474 95.723 ± 1.125
Splice Random-sampling 89.997 ± 2.226 92.370 ± 1.951
Splice Stratified-sampling 90.339 ± 1.973 92.757 ± 1.572
Splice Balanced-sampling 89.846 ± 2.199 92.902 ± 1.570
Waveform-5000 Windowing 83.802 ± 9.864 87.848 ± 7.402
Waveform-5000 Full-Dataset 75.202 ± 1.989 81.396 ± 1.493
Waveform-5000 Random-sampling 75.046 ± 2.159 81.279 ± 1.619
Waveform-5000 Stratified-sampling 75.252 ± 1.981 81.431 ± 1.487
Waveform-5000 Balanced-sampling 75.514 ± 2.143 81.628 ± 1.609

Figure 2 shows the results for the number of bits required to encode the induced models (L(H))
presented in Table 6. The groups of connected algorithms are not significantly different. In this case,
the complexity of the models induced using windowing does not show significant differences with the
complexity of the models induced using the Full-Dataset or balanced sampling.

Figure 3 shows the results in terms of data compression given the decision tree (L(D|H)). If the
compressibility provided by the models is verified on a stratified sample of unseen data, windowing
and Full-Dataset tend to compress significantly better compared to traditional sampling methods.
However, windowing tends to generate more complex models probably because its heuristic behavior
enables the seek for more difficult patterns in the data.

Figure 4 shows the results in terms of MDL in the test set. Windowing and Full-Dataset do not
show significant differences, nor they are statistically different to the traditional sampling methods.
That is, that the induced decision trees generally need the same number of bits to be represented.

1 2 3 4 5

CD

Random_Sampling

Stratified_Sampling

Balanced_Sampling

Windowing

Full_Dataset

Figure 2. Demšar test regarding the required bits to encode trees, L(H).
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Figure 3. Demšar test regarding the required bits to encode the test data given the decision tree, L(D|H).

Figure 5 shows the results for accuracy. Windowing performs very well, being almost as
accurate as Full-Dataset without significant differences. Both methods are strictly better than the
random, balanced, and stratified samplings. When considering the AUC in Figure 6, results are very
similar but the balanced sampling does not show significant differences with windowing and the
Full-Dataset. Recall that both, windowing and balanced sampling, tend to balance the class distribution
of the instances.
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Figure 4. Demšar test regarding the MDL computed on the test dataset.

1 2 3 4 5

CD

Full_Dataset

Windowing

Stratified_Sampling

Balanced_Sampling

Random_Sampling

Figure 5. Demšar test regarding the accuracy over the test dataset.
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Figure 6. Demšar test regarding the AUC over the test dataset.

In terms of class distribution (Figure 7), windowing is known to be the method that tends to skew
the distribution the most, given that the counter examples added to the window in each iteration of
this algorithm belong most probably to the current minority class. As expected, the balanced and the
random sampling methods also skew the class distribution showing no significant differences with
windowing. According to the percentage of attribute-value pairs given by Sim1 (Figure 8), windowing
and the traditional sampling methods cannot obtain the full set of attribute-value pairs included in the
original dataset. Despite this, windowing is still very competent when it comes to prediction.

1 2 3 4 5

CD

Windowing

Balanced_Sampling

Random_Sampling

Stratified_Sampling

Full_Dataset

Figure 7. Demšar test regarding the Kullback–Leibler Divergence.
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Figure 8. Demšar test regarding Sim1.
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4. Conclusions

The generalization of the behavior of windowing beyond decision trees and the J48 algorithm has
been corroborated. Independently of the inductive method used with windowing, high accuracies
correlate with aggressive samplings up to 3% of the original datasets. This result motivates the study of
the properties of the samples and models proposed in this work. Unfortunately, the Kullback–Leibler
divergence and sim1 do not seem to correlate with accuracy, although the first one is indicative
of the balancing effect performed by windowing. MDL provided useful information in the sense
that, although all methods generate models of similar complexity, it is important to identify which
component of the MDL is more relevant in each case. For example, less complex decision trees, as those
induced by random, balanced and stratified samplings, are more general but less accurate. In contrast,
decision trees with better data compression, such as those induced using windowing and Full-Dataset,
tend to be larger but more accurate. The key factor that makes the difference is the significant reduction
of instances for induction. Recall that determining the size of the samples is done automatically
in windowing, based on the auto-stop condition of this method. When using traditional sampling
methods the size must be figured out by the user of the technique. To the best of our knowledge, this is
the first comparative study of windowing in this respect. This work suggests future lines of research
on windowing, including:

1. Adopting metrics for detecting relevant, noisy, and redundant instances to enhance the quality
and size of the obtained samples, in order to improve the performance of the obtained models.
Maillo et al. [30] review multiple metrics to describe redundancy, complexity, and density of a
problem and also propose two data big metrics. These kind of metrics may be helpful to select
instances that provides quality information.

2. Studying the evolution of windows over time can offer more insights about the behavior of
windowing. The main difficulty here is adapting some of the used metrics, e.g., MDL, to be used
with models that are not decision trees.

3. Dealing with datasets of higher dimensions. Melgoza-Gutiérrez et al. [31] propose an agent &
artifacts-based method to distribute vertical partitions of datasets and deal with the growing
time complexity when datasets have a high number of attributes. It is expected that the achieved
understanding on windowing contributes to combine these approaches.

4. Applying windowing to real problems. Limón et al. [10] applies windowing to the segmentation
of colposcopic images presenting possible precancerous cervical lesions. Windowing is exploited
here to distribute the computational cost of processing a dataset of 1.4 × 106 instances and
30 attributes. The exploitation of windowing to cope with learning problems of distributed nature
is to be explored.
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Appendix A. Results of Accuracy without Using Windowing

Table A1. Average accuracy without using windowing under a 10-fold cross validation
(na = tnot available).

j48 NB jRip MP SMO
Adult 85.98 ± 0.28 83.24 ± 0.19 84.65 ± 0.16 na na
Australian 87.10 ± 0.65 85.45 ± 1.57 84.44 ± 1.78 83.10 ± 1.28 86.71 ± 1.43
Breast 96.16 ± 0.38 97.84 ± 0.51 95.03 ± 0.89 96.84 ± 0.77 96.67 ± 0.40
Credit-g 73.59 ± 2.11 75.59 ± 1.04 73.45 ± 1.96 73.10 ± 0.72 76.66 ± 2.87
Diabetes 72.95 ± 0.77 75.83 ± 1.17 78.27 ± 1.81 74.51 ± 1.46 78.02 ± 1.79
Ecoli 84.44 ± 1.32 83.5 ± 1.64 82.25 ± 3.11 83.69 ± 1.44 83.93 ± 1.31
German 73.89 ± 1.59 76.94 ± 2.29 70.06 ± 0.90 70.26 ± 0.96 74.55 ± 1.76
Hypothyroid 99.48 ± 0.20 95.72 ± 0.68 99.60 ± 0.15 94.38 ± 0.25 94.01 ± 0.48
Kr-vs-kp 99.31 ± 0.06 87.68 ± 0.43 99.37 ± 0.29 99.06 ± 0.13 96.67 ± 0.37
Letter 87.81 ± 0.10 64.33 ± 0.28 86.34 ± 0.22 na na
Mushroom 100.0 ± 0.00 95.9 ± 0.32 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00
Poker-lsn 99.79 ± 0.00 59.33 ± 0.03 na na na
Segment 96.02 ± 0.29 79.95 ± 0.69 95.25 ± 0.52 95.61 ± 0.91 92.97 ± 0.36
Sick 98.88 ± 0.29 93.13 ± 0.43 98.19 ± 0.22 95.81 ± 0.45 93.70 ± 0.56
Splice 93.81 ± 0.39 95.05 ± 0.36 94.19 ± 0.27 na 93.46 ± 0.48
Waveform5000 75.58 ± 0.37 80.25 ± 0.33 79.54 ± 0.37 na 86.81 ± 0.21
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